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analysis in the vector and scalar channels which become coupled for nonzero values of the
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1. Introduction

Holographic techniques based on the AdS/CFT correspondence [1, 2] have become a fruitful

arena in which to address questions concerning properties of a strongly coupled non-abelian

plasma (see [3] and references therein). The finite temperature scenario [4] shares many

more properties with what is expected from thermal QCD than its zero temperature coun-

terpart. Within this context, holographic spectral functions [5] have been the subject of
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much attention in the last year [6 – 9]. They carry information about transport coefficients

such as the conductivity and viscosity of the plasma [10] as well as about particle produc-

tion rates [11]. This is very appealing, since photon and dilepton production are amongst

the most interesting signatures of a quark-gluon plasma. In fact these two phenomena have

been studied in a number of recent papers starting with [12] where the geometry is that

of a stack of black D3-branes, corresponding to pure N = 4 SYM at finite temperature

with a weakly gauged U(1)R subgroup of SU(4)R, under which the N = 4 fermions and

scalar fields are charged. It was shown that in order to calculate the photon and dilepton

emission rates, at small electromagnetic coupling, the dependence on the U(1) gauge field is

subleading in the expression for current-current correlators and, therefore, the calculation

can be performed solely in reference to the non-abelian gauge fields, with no need for a

dynamical photon. This simplifies the problem greatly as the full gravity dual of N = 4

SYM coupled to weakly gauged electromagnetism is not known.

A step towards a more realistic model of QCD required the presence of charged funda-

mental matter. This technology is now well under control in the quenched approximation,

and involves the introduction of Nf ≪ Nc probe branes in the dual gravitational back-

ground [13]. The study of this framework has revealed an interesting phase structure,

in which the adjoint and fundamental matter deconfine at different temperatures [14 –

16]. Photoemission in such setups has been recently studied in [7] in the D3/D7 and the

D4/D6 systems, in [17] in the context of the Sakai-Sugimoto model [18], and in [19] for the

AdS/QCD background.

In order to unravel the phase diagram of QCD-like theories it is mandatory to go

beyond the vanishing chemical potential limit, µ = 0 [20, 21]. Recently, the study of

the strongly coupled deconfined plasma from AdS/CFT with nonzero baryon or isospin

chemical potential has become more than an academic exercise [8, 16, 22 – 28]. For instance,

at low temperatures and high densities one expects to find interesting new phases, like

the color-flavor locked color superconductor, that could occur in the interior of very dense

neutron stars. At largeNc a number of new phases have been proposed in [29, 30] which may

have implications for real QCD. Concerning heavy ion experiments, the phenomenological

appeal of this extension is less clear. While in the fireball the residual baryon density at

the core is tiny, in experiments at SPS, fits are nonetheless consistent with values of the

chemical potential of µ0 ∼ 400MeV [31, 32]. Whether this will be enough to locate the

critical point between a crossover and first order phase transition is still unclear. Therefore

one ought to address issues like photon and dilepton emission as a means of gaining insight

into different regions of the phase diagram.

The present work is an extension of [7] to include both chemical potential and finite spa-

tial momentum. Note also that in [8, 19, 33] the authors made some progress in this direc-

tion, although for simplicity they studied only a subsector of the possible spectral functions.

Next we review the strategy of the computation, as discussed in [12]. The basic ob-

ject to compute is the spectral function, related to the retarded two-point function GRµν as

follows

χµν(k) = −2 ImGRµν . (1.1)

– 2 –
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At zero temperature, the form of the retarded correlator is dictated by Lorentz invariance

and gauge symmetry

GRµν = Pµν(k)Π(k2) , (1.2)

where Pµν = ηµν − kµkν/k
2 is the transverse projector in Minkowski space and ηµν =

diag(−1, 1, 1, 1). In N = 4 supersymmetric Yang Mills theory, the form of Π(k) is dictated

by scale invariance up to a constant that can be computed and yields, at large Nc, [12]

χT=0
µν (k) = Pµν(k)

NcNf

16π
|k2|Θ(−k2)sgn(k0) . (1.3)

At nonzero temperature T 6= 0 only rotational invariance remains unbroken, and the tensor

decomposition of the retarded correlator now defines two polarization tensors Π⊥(k) and

Π||(k) as follows

GRµν(k) = P⊥
µν(k)Π⊥(k) + P ||

µν(k)Π||(k) , (1.4)

with the transverse and longitudinal projectors defined as follows: P⊥
00(k) = 0, P⊥

0i (k) =

0, P⊥
ij (k) = δij − kikj/k

2, P
||
µν(k) + P⊥

µν(k) = Pµν(k) = ηµν − kµkν/k
2. For example if

kµ = (ω, q, 0, 0) we have

P⊥
22 = P⊥

33 = 1 ; P
||
00 =

q2

ω2 − q2
; P

||
01 =

−ωq
ω2 − q2

; P
||
11 =

ω2

ω2 − q2
. (1.5)

Observables, like the conductivity and particle production rates, are encoded in the trace

of the spectral function, which can decomposed as

χµµ(k) = −4 Im Π⊥(k) − 2 ImΠ||(k) ≡ χ⊥(k) +
1

2
χ||(k) . (1.6)

For lightlike momenta, k2 = 0, we see that P
||
µν diverges. Hence, on the light cone, we

have that

lim
k0→|k|

Π||(k) = 0 . (1.7)

Otherwise we would have a divergence of GR. Therefore, χµµ(k) at lightlike momentum,

is controlled by the transverse polarization Π⊥ which is enough to compute the emission

rate for real photons [11]

dΓγ =
dk3

(2π)3
e2

2|k|nB(k)χµµ(k)

∣

∣

∣

∣

k0=|k|
. (1.8)

Here, the Boltzmann factor, nB(k) = (ek0/T − 1)−1, receives no contribution from the

baryon chemical potential because it refers to the bath of thermal photons which have zero

baryon number. When dealing with timelike momenta, rotational invariance relates these

two polarizations for vanishing three-momentum q where kµ = (ω,q),

lim
q→0

Π⊥(ω,q) = lim
q→0

Π||(ω,q) . (1.9)

For nonzero q both polarizations contribute to χµµ(k) and encode the production of virtual

photons which eventually decay into dilepton pairs, ll̄, of momentum kµl + kµ
l̄

= kµ. If the
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lepton l has mass ml and charge el, the differential dilepton emission rate per unit four-

volume is given by

dΓll̄ =
d4k

(2π)4
e2e2l

6π|k2|5/2 Θ(k0)Θ(−k2 − 4m2
l )
√

−k2 − 4m2
l (−k2 + 2m2

l )nB(k)χµµ(k) . (1.10)

As we see, the relevant part of the computation resides in the retarded correlator. At

strong coupling, for the time being, only holographic techniques are easy to implement,

albeit in N = 4 supersymmetric Yang Mills at large Nc.

In [34] the quasinormal spectrum for strongly coupled finite temperature N = 4 SYM

was calculated from a holographic perspective. The ’melting meson’ scenario defines a

spectrum of states where the poles in the correlator are found in the complex plane and

therefore correspond to modes of finite lifetimes. For this reason, the interpretation of the

spectral functions which we will be calculating in the following will be clear in terms of the

set of quasinormal mesons in the plasma.

The outline of the paper is as follows. In section 2 we outline the brane construction

of flavor probes in the presence of a finite baryon number density and discuss the regions

of interest in the parameter space in terms of the effective horizon area on the probe. In

section 3 we discuss the calculation of the transverse gauge fluctuations on the probe brane

and the coupled system involving the longitudinal modes and the scalar perturbations. We

show how the spectral function can be calculated in all three sectors. In section 4 we give

results in various regions of parameter space for the spectral function, the photoproduction

rates and the limiting velocity of the mesons, as calculated from the peaks in the spectral

functions. We illustrate how the presence of a finite baryon number and finite spatial

momentum affect all these results. In section 5 we discuss how the conductivity can be

calculated using the microscopic approach and show that we get the same answer as that

calculated in the macroscopic regime in [22]. In section 6 we discuss these results and

provide new directions for future research. In the appendices we provide more details of

the calculations given in the bulk of the paper as well as providing some exact, analytic

results in various regions of momentum space.

2. Holographic setup

In the framework of the AdS/CFT correspondence, the retarded correlator GR(k) can be

obtained from the perturbations of a U(1) gauge field dual to the electromagnetic current on

the boundary. The relevant holographic description is provided by an AdS geometry with

a non-extremal horizon and embedded probe branes. The baryonic U(1) symmetry is the

abelian center of the natural U(Nf ) global symmetry present on a stack of Nf coincident

D-branes. For the case of interest here, namely Dp/Dq configurations, the dynamics of

this gauge field is fully encoded in the action for the probe Dq brane:

S = −NfTDq

∫

Dq

dq+1x e−φ
√

− det(g + 2πα′F ) +WZ . (2.1)

The second term on the r.h.s. stands for the Wess-Zumino term which will not make

any contribution to the equations of motion for the background and the fluctuations (see
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appendix D). TDq = 1/((2πls)
qgsls) is the Dq-brane tension, gs is the string coupling

constant and gµν is the pullback metric induced by the relevant background. As for the

background, we will be concerned with the near horizon limit of a stack of non-extremal

Dp-branes. The general form for any p is given by

ds2 = H−1/2(−fdt2 + d~x2) +H1/2

(

dρ2

f
+ ρ2dΩ2

8−p

)

,

eΦ = H
3−p
4 ; C01...p = H−1 , (2.2)

where ~x = (x1, . . . , xp) and

H(ρ) =

(

L

ρ

)7−p
; f(ρ) = 1 −

(

ρ0

ρ

)7−p
. (2.3)

The probe Dq-branes wrap an n−sphere in the directions transverse to the Dp-branes, so

it is convenient to write the metric on S8−p in adapted coordinates,

dΩ2
8−p = dθ2 + sin2 θ dΩ2

n + cos2 θ dΩ2
7−p−n . (2.4)

Setting ψ = cos θ the classical Dq-brane embedding may be specified by a dependence

ψ = ψ(ρ). On the probe brane, a U(1) gauge field can be switched on that will also

depend only on the radial coordinate, Aµ(ρ). We shall make use of the dimensionless

radial coordinate u, related to ρ by

u =

(

ρ0

ρ

)
7−p
2

, (2.5)

in terms of which f(u) = 1 − u2 and the horizon lies at u = 1. The Hawking temperature

is given by

T =
7 − p

4πL

(ρ0

L

)
5−p
2
. (2.6)

2.1 The D3/D7 system

From this point on we will specialize to the case of D7-brane probes in a black D3-brane

geometry. The D3/D7 intersection is summarized in the following array

0 1 2 3 4 5 6 7 8 9

D3 : × × × ×
D7 : × × × × × × × ×

and the bulk metric reads

ds2 =
(πTL)2

u
(−fdx2

0 + d~x2) +
L2

4u2

du2

f
+ L2dΩ2

5 , (2.7)

where

L4 = 4πgsNcl
4
s . (2.8)
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Specifiying the D7-brane embedding through ψ = ψ(u) the induced metric takes the form

ds2D7 =
(πTL)2

u
(−fdt2 + d~x2) +

L2(1 − ψ2 + 4u2fψ′2)
4u2f(1 − ψ2)

du2 + L2(1 − ψ2)dΩ2
3 , (2.9)

with the D7-brane wrapping an S3 ⊂ S5. The generalization of the previous setup for finite

baryon density was investigated in [16]. The relevant bulk degree of freedom dual to the

baryon chemical potential is the A0 component of a U(1) gauge field on the worldvolume

of the D7-brane. The background profiles for ψ(u) and A0(u) are obtained by solving the

Euler-Lagrange equations of the Born-Infeld lagrangian

L = −NfTD7

√

− det(g + 2πα′F ) . (2.10)

The gauge field A0(u) obeys a conservation equation owing to the fact that it enters the

action purely through its derivatives,

∂u





ψ̃4A′
0

√

T 2L4(ψ̃2 + 4u2fψ′2) − α′216u3ψ̃2A′2
0



 = 0 , (2.11)

where ψ̃(u) =
√

1 − ψ(u)2 = sin θ(u). Asymptotically in the UV region u→ 0 we will show

that limu→0 ψ = 0 (see eq. (2.18) below) and therefore this equation reduces to ∂2
uA0(u) = 0

which has the solution

A0(u) = µ− au+ · · · . (2.12)

By means of the holographic dictionary [22] µ is proportional to the chemical potential for

the baryon number density, and a is proportional to the baryon number density itself. Equa-

tion (2.11) implies the existence of a constant of motion, D, which we normalize as follows

D =
−4α′ψ̃4A′

0
√

T 2L4(ψ̃2 + 4u2fψ′2) − α′216u3ψ̃2A′2
0

. (2.13)

Evaluating this constant of motion at u = 0 implies that

D =
4α′

TL2
a . (2.14)

In terms of D the field A0 can be expressed as

A′
0(u) = −L

2T

4α′
D

√

ψ̃2 + 4u2fψ′2
√

ψ̃2(ψ̃6 +D2u3)
. (2.15)

Following the discussion in [16] we can express the chemical potential as

µ =
DTL2

4α′

∫ 1

0

√

ψ̃2 + 4u2fψ′2
√

ψ̃2(ψ̃6 +D2u3)
du , (2.16)

– 6 –
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and we see that in the limit of vanishing baryon density D → 0 we obtain vanishing chem-

ical potential (note that there is a region of the phase diagram for which this does not hold

for sufficiently large quark mass [16, 26]).

The equation for ψ(u) for a generic Dp/Dq intersection is given in eq. (A.12), and,

specializing to the D3/D7 case, gives

∂u





4fψ̃2ψ′
√

ψ̃6 +D2u3

u
√

ψ̃6(ψ̃2 + 4u2fψ′2)



+
ψ
(

3ψ̃4 + 4u2fψ′2(2ψ̃6 −D2u3)
)

u3

√

ψ̃6(ψ̃6 +D2u3)(ψ̃2 + 4u2fψ′2)
= 0 . (2.17)

Close to the boundary this equation reads ∂u (4ψ′/u) = −3ψ/u3 and its solution behaves as

ψ(u) ∼ mu1/2 + cu3/2 + · · · , (2.18)

independent of the baryon density and where the constants m and c parametrize respec-

tively the quark mass and something we loosely refer to as quark condensate [35 – 39],

Mq =
1

2

√
λTm ,

〈O〉 = −1

8

√
λNfNcT

3c , (2.19)

with λ = g2
YMNc = 2πgsNc, the ’t Hooft coupling. The operator O is a supersymmetric

version of the quark bilinear

O = Ψ̄Ψ + Φ†XΦ +MqΦ
†Φ , (2.20)

with X one of the adjoint scalars. A precise definition can be found in [16].

Equation (2.17) is a non-linear differential equation which cannot be solved analyti-

cally and therefore its integration is performed numerically [14, 41]. For D = 0 the stable

embeddings ψ(u) fall into two categories, labelled “Minkowski” and “black hole”. Addi-

tionally one can find metastable configurations corresponding to a supercooled phase. For

Minkowski embeddings the D7-brane never enters the black hole and we have a maximum

value umax < 1 the probe branes can reach. In this case one has stable bound states identi-

fied with mesons whose spectrum manifests a mass gap and discretization [42]. This is seen

in the spectral function as an infinite sum of δ-functions. For black hole embeddings, the

D7-brane intersects the horizon, hence umax = 1. The branes develop an induced horizon

and all the meson resonances become unstable [34, 40].

This situations changes drastically at finite baryon density. One of the main discoveries

in [16] was that for any value of D > 0 there are only black hole embeddings. In fact a

regular series expansion around the horizon u ∼ 1 that solves (2.17) takes the form

ψ(u) = ψ0 −
3

8

ψ0(1 − ψ2
0)

3

(1 − ψ2
0)

3 +D2
(1 − u) + O(1 − u)2 (2.21)

and as we see, depends solely on the limiting value of the embedding profile at the horizon

ψ0 = ψ(u = 1). Note that this solution automatically satisfies the orthogonality condition

– 7 –
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Figure 1: On the left-hand side we see the dependence of m with ψ0 for values of D = 20, 5 and

1 (from left to right). As soon as D 6= 0, arbitrarily high values of m have a black hole embedding

with ψ0 ∈ [0 , 1). On the right-hand side we plot the embeddings ψ(u) for different values of ψ0

ranging from 0.1 to 0.99 and D = 1.

Figure 2: The left plot shows the normalized horizon area as a function of the quark mass and

the baryon number density. The right hand graph is a contour plot showing lines of equal induced

horizon area, labelled by the corresponding value of ψ0. Hence we have smaller induced horizons

for larger values of ψ0.

of [16] due to the vanishing Jacobian on the horizon. This expansion can be used to specify

the boundary conditions in order to numerically integrate ψ(u) out towards the boundary,

from where we can read off m and c from eq. (2.18). Plotting m(ψ0) in figure 1 we observe

indeed that moving the value of ψ0 in the range [0, 1) covers the full range of m ∈ [0,∞).

The 3-area of the induced horizon (per unit 3-dimensional Minkowski space volume) is

controlled by ψ0

AH = 2π2(πTL2)3(1 − ψ2
0)

3/2 . (2.22)

In figure 2 we have plotted the curves of equal induced area on the D7-brane. We expect

– 8 –
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this quantity to govern the rough shape of the peaks of the spectral function with larger

widths for larger induced horizons. Close to D = 0 we see a qualitative change in behaviour

below mcrit ∼ 1.3. This is roughly the critical mass below (above) which we have black

hole (Minkowski) embeddings at D = 0. From the form of the iso-curves, we expect a

maximum effect of D on physical quantities for m in the range ∼ (1.3, 4). For m outside

this range the change in induced horizon area is small for a given increment in D.

3. Fluctuations

We will consider perturbations of the world-volume fields that may depend only upon the

RG flow coordinate u and the Minkowski coordinates x0, x1. In other words, we shall con-

sider only fluctuating fields that are independent of the internal coordinates wrapping the

S3.

ψ(u, x) → ψ(u) + ǫ e−i(ωx
0−qx1)Ψ(u) ,

Aµ(u, x) → Aµ(u) + ǫ e−i(ωx
0−qx1)Aµ(u) . (3.1)

With this we can expand the DBI lagrangian in powers of ǫ

L = L0 + ǫL1 + ǫ2L2 + · · · . (3.2)

Upon imposing the equations of motion for the background fields, L1 vanishes and the

linearized equations for the perturbations can be derived from the quadratic piece. The

equations of motion can be found in appendix A. For q 6= 0 the fields A0,A1 and Ψ must

solve a coupled system of differential equations and cannot be set to zero independently.

This coupling only happens for q 6= 0 and vanishes in the limit of zero D. On the other

hand, the transverse excitations A⊥ = A2,3 do decouple. We will analyze the two sets of

fields independently in the following section.

It is important to note our definition of the various degrees of freedom. Although the

scalar and the longitudinal mode of the gauge field do mix via their equations of motion,

we will show that the spectral functions decouple in the UV (that is there is a vanishing

two-point function between the operators sourced by the scalar and the longitudinal vector

field). This means that although there is IR operator mixing, there is no ambiguity in the

definition of the vector and scalar modes on the UV boundary.

3.1 Longitudinal and scalar excitations

This set of degrees of freedom is rather cumbersome to analyse because their equations

of motion are coupled at first order. We have the freedom to make a gauge choice which

leaves us with a constraint, plus three linearly independent equations relating A0, A1 and

Ψ (see eqs. (A.15)–(A.17)). By writing linear combinations of the constraint with the

equations of motion for A0, A1 and Ψ we are able to find a single propagating gauge

invariant combination given by the longitudinal electric field component:

Z = qA0 + ωA1 . (3.3)

– 9 –
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This field is still coupled to the scalar excitation Ψ and thus the equations of motion for

these two degrees of freedom must be solved simultaneously (see eqs. (A.23), (A.24)). In

order to solve the coupled equations of motion we must investigate the boundary conditions

for the coupled system. For retarded Green’s functions, we select incoming wave boundary

conditions on the black hole horizon. The analysis of the Frobenius expansion is given in

appendix B. The selection of incoming wave boundary conditions is possible and from it we

can numerically integrate the coupled system of equations simultaneously to the boundary

to obtain the Fourier bulk modes Ψk(u) and Zk(u) with k = (ω, q, 0, 0). At this stage we

must write the boundary action in terms of the Ψk(u) and Zk(u) degrees of freedom. This

is given by an expression of the form:

SB[Z,Ψ;u] = −N
∫

d4k

(2π)4
(

FZZZ ′
kZ−k + FZΨ(Z ′

kΨ−k + Ψ′
kZ−k) + FΨΨΨ′

kΨ−k + · · ·
)

,

(3.4)

where the ellipses stand for non-derivative terms that will not contribute to the imaginary

part of the spectral functions and

N = NfTD7(2π
2)(2πα′)2(πTL2)2 =

NfNcT
2

4
. (3.5)

The coefficients, FIJ , are functions of the embedding solution, D, ω, q and u which are

best given in terms of the following functions

g(u) = −(ψ̃(u)6 −D2u3) , (3.6)

h(u) =
g(u)

ψ̃(u)10
(

ψ(u)2 − 4u2f(u)ψ̃′(u)2 − 1
) . (3.7)

We find, in terms of the usual dimensionless ratios w = ω/2πT and q = q/2πT ,

FZZ(k, u) =
ψ̃6fg

√
hq2fψ̃6 +w2g

1

(2πT )2
u→0−→ 1

ω2 − q2
+ · · · ,

FZΨ(k, u) = −4qDu2f2hψ′ψ̃10q2fψ̃6 + w2g

(

πTL2

2πα′

)

1

2πT

u→0−→ 2mDu3/2 q

ω2 − q2

(

πTL2

2πα′

)

+ · · · ,

FΨΨ(k, u) = −fψ̃
14h3/2(q2(fψ̃8 − 4D2f2ψ′2u5) + w2ψ̃2g)

ug(q2fψ̃6 + w2g)

(

πTL2

2πα′

)2

u→0−→ 1

u

(

πTL2

2πα′

)2

+ · · · . (3.8)

From these expressions it is clear that the coupling between operators sourced by Z and

Ψ in the UV occurs only for non-zero q and D.

One can show that, on shell, the imaginary part of the boundary action (3.4) is in-

dependent of u. Despite the fact that this is of little help in computing the individual

components of the retarded two-point function GRIJ(k), we have used this as a quality

check of our numerical integration. In fact, obtaining a constant value up to one part in

105 supports our confidence in the accuracy of the solutions.
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In order to calculate the spectral function, we must take derivatives with respect to the

boundary values of the fields which act as sources for the operators of interest. However,

with the Ψ degree of freedom in its current form, this is not the source for the quark-

bilinear operator which we are interested in. By looking at the solution of the field on

the boundary (eq. (2.18)) we see that the field with the appropriate scaling to source a

q̄q operator (and its gaugino and scalar counterparts) in the UV is Ψ̃(u) = u−
1
2 Ψ(u).

Changing variables to Ψ̃ we can calculate the retarded correlator in the Ψ̃,Z sector which

is given by GRIJ(k), I, J = Z, Ψ̃:

GRIJ(k) =−N













2FZZ(k, u)

(Z ′
k(u)

Zk(u)

)

FZΨ(k, u)u
1
2

(

Z ′
k(u)

Zk(u)
− Ψ̃′

−k(u)

Ψ̃−k(u)

)

−FZΨ(k, u)u
1
2

(

Z ′
k(u)

Zk(u)
−

Ψ̃′
−k(u)

Ψ̃−k(u)

)

2uFΨΨ(k, u)

(

Ψ̃′
k(u)

Ψ̃k(u)

)













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u→0

+ · · · , (3.9)

where the ellipses stand for real contact terms that will not contribute to the spectral

function. The boundary limit u → 0 corresponds to a definition of the dual theory in the

UV. We see that in this limit the off-diagonal terms vanish and we obtain a diagonal matrix.

Conversely, setting u = ǫ corresponds to a definition of the dual QFT as a Wilsonian

effective field theory defined at a finite energy scale. In this case the presence of D will

induce in the RG flow a mixing of the corresponding quantum operators.

3.2 Transverse excitations

Transverse excitations are decoupled and therefore simpler to deal with in the presence of

D. Again, computing the retarded Green function involves the evaluation of the boundary

action on relevant solutions for the bulk perturbations. The equation of motion for these

perturbations can be found in equation (A.14). Close to the horizon the incoming transverse

mode has the form:

A⊥,k(u) ∼ (1 − u)−i
w
2 ak(u) , (3.10)

with k = (ω, q, 0, 0) and ak(u) an analytic function at u = 1. The solution for A⊥,k(u)
will depend parametrically on m and D (both explicitly and through ψ0(m,D)), ω and q.

These solutions are to be inserted into the boundary action which is given by

SB[A⊥, u] = −N
∫

d4k

(2π)4
F⊥(u)A′

⊥,k(u)A⊥,−k(u) , (3.11)

where F⊥(k, u) = fψ̃6
√
h, with h(u) as in (3.7) of the previous section. An analysis of

the differential equation shows that close to the boundary the exponents of the Frobenius

expansion are ∆ = 0, 1 as usual for a bulk gauge field. In this case, the usual prescription

for calculating Minkowskian 2-point functions is implemented [43]

GR⊥(k) = −2N lim
u→0

F⊥(k, u)

[

A′
⊥,k(u)

A⊥,k(u)

]

. (3.12)

In section 4 we plot the results of this analysis. When comparison is possible, we find

agreement with the results of [8, 33].
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Figure 3: In this figure we plot the quotient of the spectral function over the frecuency χµ
µ(w)/w

for lightlike momenta w = q and different values of the constituent quark mass. Above D ∼ 0.3 all

curves become monotonically decreasing with w.

Figure 4: Illustration of the increase in the photoproduction rate with D for masses below mcrit.

4. Graphical results

In this section we give an account of the results obtained by numerical integration of the

equations of motion. In all cases we calculate the spectral function by using the definitions

given in equations (1.1), (3.9) and (3.12). The equations of motion are defined in terms

of the parameters q, w, D and implicitly through the mass m. In the following we will

explore what we believe to be the most enlightening areas of this large parameter space. In

various limits, the numerical results can be seen to coincide with the analytical behaviour,

derived in appendix C.

4.1 Vector modes

4.1.1 Lightlike momenta q = w
For the study of spectral functions at lightlike momenta, the longitudinal excitations vanish

and we must simply solve for the transverse degrees of freedom. Spectral functions at

lightlike momenta have been calculated for D = 0 in [7] as they are relevant for the

computation of the emission of thermal photons from the plasma. For lightlike momenta

the longitudinal contribution to the spectral function vanishes. In figure 3 we have plotted1

1In all the plots we normalize the spectral function in units of
NfNcT

2

2
and the scalar mode in units of

– 12 –
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Figure 5: Asymptotic behaviour of χµ
µ as a function of the mass. We see that for large masses

the coefficients of the fit stabilize around a value of γ ∼ 1. Note that numerical errors are large

here due to the region of w(∼ 70) in which the calculation is being performed.

the spectral function for different masses and baryon density. The left most plot coincides

with the results in [7] and the others show the influence of D on the set of curves labelled

by different masses.

As a general rule we find an enhancement of the spectral function for low values of

the momentum. The top curve corresponds to massless quarks, and its behaviour at the

origin is related to the electrical conductivity. We observe an increase with D that will

be investigated below. In fact, for sufficiently high values of D(& 0.3) all the curves for

different masses become monotonically decreasing functions of ω. A peculiar feature at

D = 0 is the crossing of the curve m = 1.3 with curves of slightly lower mass. This,

translated into emission rates suggests that plasmas made of heavier quarks would shine

brighter beyond w ∼ 1.4. We see that this feature disappears already for low values of the

baryon number and χµµ becomes a single valued function of ω and m. The enhancement of

the spectral function, translated into photoproduction rates exhibits a considerable increase

as plotted in figure 4. The white area below the coloured curves corresponds to the D = 0

value. The enhancement is extremely large for masses around mcrit (the mass of the quark

at the phase transition point in the absence of baryon number ∼ 1.3). This corresponds to

an effective increase in brightness of the plasma of more than an order of magnitude!

4.1.2 Large w behaviour

From the analysis in [12] we know that at large ω ≫ 1 the spectral function for lightlike

momenta goes like ∼ ω2/3 when m = 0. In [7], this behaviour seemed to persist for finite

mass less than or equal to the critical one m ≤ 1.3. These are the only stable black

hole embeddings for vanishing D. To go to higher quark masses one must turn on D for

stability. We have done a similar analysis and fitted our numerical results to a function

of the form χµµ = α + βwγ where the α, β and γ are functions of m and D. The results

are plotted in figure 5. The universality of γ ∼ 2/3 as observed in [7] corresponds to

the the right most figure for values of m ≤ mcrit ∼ 1.3 where we see that all curves

accumulate on an almost flat line. For masses approximately in the range m ∈ (1.3, 6)

the parameters of the fit exhibit a strong dependence on the baryon number density. This

NfNcT
4L2

8α′2 .
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Figure 6: This plot shows the spectral function for longitudinal and transverse modes χ||(ω) and

χ⊥(ω) at q = 20 for two different values of D = 0.1, and 0.5. All curves oscillate around the zero

temperature value given in eq. (1.3).

is to be expected, as these embeddings are the ones for which the induced horizon area

changes most dramatically when D is switched on (see figure 2). For large m despite the

fact that the embedding changes greatly in the UV, the change in the induced horizon area

is negligible. For asymptotically large values of m the parameters seem to stabilize around

some marginally D dependent values.

4.1.3 Timelike momenta

For timelike momenta both χ|| and χ⊥ are nonzero and contribute to the spectral function.

In figure 6 we have plotted both functions for several values of the baryon density, D = 0.1

and 0.5, in the range where the peaks are clear. As a function of the baryon density, the

peaks seem to decrease in amplitude and increase in width monotonically. This corresponds

to the poles moving further from the real axis in the complex plane. Concerning the spread

among both components, the situation is not easily captured from the figure, therefore we

have tracked the movement of those peaks in figure 7.

On the left we plot the position of the peaks in χ||, and see a drift towards higher

values for increasing D. On the right, we observe how the difference in peaks among both

components indeed builds up also with D.

In figure 8 we plot the difference in the full spectral function from the T = 0 result as

a function of w for q = 1 and different values of the baryon density. For values of m below

(above) 1.3 the effect of the chemical potential is to enhance (suppress) the height of the

oscillations as a function of w.

Concerning the q dependence, figure 9 shows the longitudinal spectral function, χ||, for

two different values of w = 10, and 20. For such high values we expect results very close to

– 14 –
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Figure 7: Left hand plot: position of the first peaks in the longitudinal component χ||. Right

hand side: difference between the positions of the nth peaks of χ|| and χ⊥. All for different values

of D = 0.1, 0.25, 0.5 and 0.75.

Figure 8: Finite T contribution to the full spectral function ∆χ(w, q = 1) for different values of

D.

the zero temperature prediction as given in eq. (1.3) whose plot corresponds to the dashed

line in the figure.

We see peaks appearing in the region close to the light cone (q ∼ w). As we move away

from the light cone (to smaller q) the peaks in the spectral function for different w are in

one-to-one correspondence. This could be seen by plotting the spectral function in the fullw − q plane. As before, we must treat peaks in the longitudinal and transverse spectral

functions separately. We have plotted them in figure 10. Peaks in χ⊥ fit very well with a

mass hyperbola of the form w2 − v2
⊥,nq2 = M2

n (4.1)

where Mn should correspond to the modes of the quasiparticle spectrum, and presumably

coincides with the continuation of the mass spectrum to the region where they become
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Figure 9: q dependence of the longitudinal spectral function at varying D and w.

unstable (see the discussion in references [6, 44]). A careful analysis of the limiting velocity,

vn, of these unstable mesons was initiated in [45] and recently pursued in [33]. For D =

0.5, 2, 10 our data are consistent with the fits in table 1.2 In [33] it was argued that the

limiting velocity should be in any case v⊥,n = 1 for q → ∞. The interpolation to this

behavior led the authors to speculate on the existence of an intermediate region where the

group velocity may become superluminal (see [46, 47] for discussions on topics related to

superluminal propagation).

The departure from v⊥,n = 1 is certainly very small. However it displays a well defined

monotonically increasing behaviour with D and m. Due to rotational invariance for q = 0

we know that the curves for the transverse and longitudinal peaks must intersect at zero

momentum. However, unlike the transverse case, we were unable to fit the longitudinal

peaks to a mass hyperbola.

4.2 Scalar modes

The spectral function for the scalar modes is obtained along the same lines as stated in

the previous section from the GRΨΨ component in eq. (3.9). Again, they must be calculated

by solving the full coupled equation, although the operator becomes decoupled in the

UV. In figure 11 we compare the longitudinal part of the spectral function and the scalar

perturbation for two values of the quark mass m at fixed D. For large masses we recover

the T = 0 result and therefore the peaks narrow and become degenerate for the different

modes, while for low quark masses we see that the peaks broaden, as expected, and move

away from the longitudinal modes to which they are coupled in the IR. We see that the

masses of the scalar quasinormal modes (the peaks in the spectral function) are higher than

2We fit the mass hyperbola eq. (4.1) by setting the value of Mn equal to the peak position at q = 0 and

performing a χ2 fit analysis to the rest of the points.
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Figure 10: For the transverse spectral function, the first four peaks move in the w, q plane

along hyperbolae with different limiting velocities, data points are marked with full circles. For the

longitudinal modes we do not have a nice parametrization, so we plot only the raw data, marked

as crosses. The thick line is the light cone q = w.

D = 0.5 D = 2 D = 10

n Mn v⊥,n Mn v⊥,n Mn v⊥,n
1 4.0 1.0006 4.2 1.0038 5.1 1.01251

2 7.1 1.0036 7.8 1.01086 9.9 1.02618

3 10.3 1.0064 11.5 1.01762 14.8 1.03945

4 13.6 1.0101 15.2 1.02422 19.3 1.04574

Table 1: In this table we provide the values of v⊥,n and Mn that optimally fit the data. The values

of v⊥,n exhibit a weak monotonic correlation with D and Mn.

the equivalent longitudinal modes. The lifetimes are also shorter, given by a widening of

the scalar peaks. Note that this same pattern is seen in a slightly different context in [48]

for instance.
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Figure 11: For larger values of the quark mass m the curves for the longitudinal spectral function

and the scalar are more similar than for smaller values.

5. Conductivity

The electrical conductivity can be obtained from the zero-frequency slope of the spectral

function for electromagnetic currents. In [7] the conductivity of the plasma was calculated.

We may do the same here, however we include the effects of a finite baryon density. This

quantity may be calculated at null-momentum [12, 7] and therefore only the transverse

spectral function contributes;

σ =
e2

4
lim
k0→0

1

k0
χµµ(k)

∣

∣

∣

∣

k0=|k|
. (5.1)

We show the results for this numerical calculation in figure 12. In [22] the conductivity

of the plasma was obtained from Ohm’s law using AdS/CFT techniques. In the presence

of an electric field ε a current establishes satisfying Ohm’s law J = σε. The electrical

conductivity is given by the following expression:3

σ =
e2

4

√

√

ε2 + 1(1 − ψ2
0)

3 +
D2

ε2 + 1
, (5.2)

where ε the electric field strength, is zero in the present setup. An insightful interpretation

of this formula was given in the aforementioned reference in terms of two sources of charge

carriers contributing to the conductivity. One comes explicitly from the baryon charge

asymmetry, and is given by the D2 contribution. The other comes from charge carriers

produced via pair creation in the plasma. This effect clearly depends upon the mass of the

fundamental charged quarks through the combination (1−ψ2
0) and is equal to 1 for massless

quarks and to 0 for infinitely massive ones. This second effect is implicitly dependent on

D. Our numerical results plotted in figure 12 match perfectly with the above analytic

expression in the limit of vanishing electric field ε→ 0.

3Note that our definition of σ and D differs from that in [22] by constant coefficients which are given in

detail in appendix E.
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Figure 12: Conductivity, calculated numerically from the derivative of the spectral function as a

function of the quark mass for various values of the baryon number density. The plot matches with

the analytic expression given in eq, (5.2) upon setting ε = 0.

This result can also be derived from the exact analytic expression for the low frequency

limit of the spectral function as given by (C.6). The calculation in [22] is a macroscopic

result. The fact that this matches with our derivation from microscopic linear response the-

ory is a highly non-trivial check of consistency since both explicit and implicit dependence

on the baryon density are correctly reproduced from the full spectral function.

6. Conclusions

Exploiting the AdS/CFT correspondence at finite temperature and baryon density we have

considered a holographic dual of N = 4 super Yang Mills with quenched massive flavours

(which break supersymmetry to N = 2). These flavours are constructed from a small

number, Nf , of D7-branes embedded in the black hole geometry sourced by a stack of

Nc D3-branes. The addition of finite baryon number is modeled by turning on a vev for

the worldvolume gauge field A0 living on the D7-brane. Working at fixed baryon number

gives an additional parameter D in addition to the constituent quark mass in units of the

Hawking temperature. This opens up the possibility of studying the spectral functions for

flavour bilinear operators in regimes where there is clearly recognizable structure. This

structure is interpreted in terms of quasinormal modes of mesons which develop a finite

lifetime, and therefore a broadening of their spectral functions at finite temperature. By

looking at the spectral function of longitudinal and transverse modes as well as excitations

of the scalar embedding coordinates on the D7-brane we have studied the behaviour of

the poles in the spectral function as a function of D as well as spatial momentum. In

particular, for finite D and q we are forced to solve for the scalar and longitudinal modes

as a coupled system of differential equations.
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In general we find a splitting of the peaks between the spectral functions χ⊥ and χ||

which increases with both the baryon number and the spatial momentum. Plotting this

effect for different quark masses, we find that the effect is most pronounced for values of

m in the range ∼ (1.3, 4). This is where the induced horizon area changes most upon

switching on D. We have also investigated the dispersion relations w(q), where w is the

position of the peaks in the spectral function. For the peaks in χ⊥ we find a very good fit of

the data for the position of the peaks on a mass hyperbola of the form w =
√

v2
nq2 +M2

n,

as discussed in [33]. For low masses, close to the critical mass, (as defined by the phase

transition present in the absence of baryon density) and very low values of D (so that the

peaks are still clearly seen) the values of v⊥,n ≪ 1 found in [33] are reproduced. For high

enough values of the baryon density (and therefore high quark masses, in order to keep

the position of the poles close to the real axis) we also find values of v⊥,n > 1. For the

longitudinal modes we do not know the correct function to fit. All of these issues should

be confronted with the observation made in [33] that as q → ∞ the zero temperature

relativistic dispersion relation with w = q should be recovered. The clarification of this

issue demands the use of powerful techniques, in particular the analysis of the quasinormal

modes. Certainly this will be a very challenging calculation for the coupled longitudinal

and scalar modes, where the technique of converting the equation of motion to Schrödinger

form becomes very difficult. We will come back to this issue in the future.

The most spectacular effects of the baryon density appear in the small w region for

lightlike momenta. This is seen in the set of figures 3 where most of the change with D

occurs for w . 2. There are two main consequences of this. On one hand the baryon

density is responsible for an increase in the photoproduction rate, for small quark masses

by a very large percentage. On the other, the slope as a function of ω at the origin is

directly related to the electrical conductivity. We have provided analytical and numerical

evidence that the effect of baryon number is given by σ ∼
√

(

1 − ψ2
0

)3
+D2. This provides

a highly nontrivial check of the results obtained in [22] for the electrical conductivity in a

macroscopic setup.

It is clear that there is room for more research in this area, in particular a study of

the limiting velocity and functional form of the dispersion relations for the longitudinal

and scalar modes would be of great interest. In order to investigate this accurately, a large

amount of computational time will be necessary. The study of the effects detailed in this

paper may also be applied to various other finite temperature geometries. As mentioned

above, a full calculation of the quasinormal modes will allow us to go to higher values of

spatial momentum than are currently available by studying peak positions in the spectral

functions.
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A. Equations of motion

In this section we shall give more details about the equations we have been dealing with in

the text. We will try to keep quite general and provide formulae that encompass general

Dp/Dq intersections. The background metric will be given by a type II supergravity

solution, of the following generic form

ds2II = GMN (X)dXMdXN , M,N = 0, . . . , 9 . (A.1)

We shall consider the embedding in the following gauge: separate XM into two groups

Xa, a = 0, 1, . . . , q and XI , I = q + 1, . . . , 9.

XM →
{

Xa = ξa = {x0, xi, u, θk} (a = 0, 1, . . . , q)

XI = ZI(ξ) = {ψ,ϕj} (I = q + 1, . . . , 9)

}

. (A.2)

Then the pullback metric and the dilaton are 10 dimensional bulk fields in origin. They

are evaluated on the Dq brane

φ = φ(ξ, Z(ξ)) ; gab = Gab(ξ, Z(ξ)) +GIJ (ξ, Z(ξ))
∂ZI

∂ξa
∂ZJ

∂ξb
, (A.3)

where we have assumed that the background metric has no mixed terms GaI = 0. On the

other hand, the gauge fields are purely world-volume fields, hence

Fab(ξ) = ∂aAb(ξ) − ∂bAa(ξ) . (A.4)

Let us consider a set of perturbations of the form

ZI(ξ) = z(0)I(ξ) + ǫz(1)I(ξ) ; Aa(ξ) = A(0)
a (ξ) + ǫA(1)

a (ξ) , (A.5)

and expand up to second order in ǫ. Naming gab the pullback metric we have

φ = φ(0) + ǫφ(1) + ǫ2φ(2) ; gab = g
(0)
ab + ǫg

(1)
ab + ǫ2g

(2)
ab ; Fab = F

(0)
ab + ǫF

(1)
ab . (A.6)

For example

φ(1) = ∂Iφ
(0)z(1)I ; φ(2) =

1

2
∂I∂Jφ

(0)z(1)Jz(1)J ,

g
(0)
ab = Gab(ξ, z

I(ξ)) ,

g
(1)
ab =

(

Gab,K +GIJ,Kz
(0)I
,a z

(0)J
,b

)

z(1)K + 2GIJz
(0)I
,(a z

(1)J
,b) ,

g
(2)
ab =

1

2

(

Gab,KL +GIJ,KLz
(0)I
,a z

J(0)
,b

)

z(1)Kz(1)L +GIJz
(1)I
,a z

(1)J
,b + 2GIJ,Kz

(1)Kz
(0)I
,(a z

(1)J
,b) ,
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We want to expand the DBI lagrangian

L = e−φ
√

|det(g + F )| , (A.7)

in powers of ǫ. Note that the absence of the Wess-Zumino term is detailed in appendix D.

Defining

γab ≡ G(0)
ab = g

(0)
ab + F

(0)
ab ; G(1)

ab = g
(1)
ab + F

(1)
ab ; G(2)

ab = g
(2)
ab , (A.8)

as well as

Σ(i)a
b ≡ γacG(i)

cb ,

the lagrangian up to O(ǫ2) is

L = e−φ
√

detG = L0 + ǫL1 + ǫ2L2 , (A.9)

with

L0 = e−φ
(0)√

γ ,

L1 = e−φ
(0)√

γ

(

−φ(1) +
1

2
trΣ(1))

)

,

L2 = e−φ
(0)√

γ

(

1

2
trΣ(2)− 1

4
trΣ(1)2+

1

8
(trΣ(1))2− 1

2
φ(1)trΣ(1)+

1

2
φ(1)2 − φ(2)

)

. (A.10)

Let us now focus on a particular family of bulk metrics adapted to the setting of a Dp/Dq

intersection, with q = p+ n+ 1.

ds2II,B = G00(u)dx
2
0 +Gii(u)d~x

2
p +Guu(u)du

2 +Gθθ(u, ψ)dΩ2
n

+Gψψ(u, ψ)dψ2 +Gϕϕ(u, ψ)dΩ2
7−p−n ,

φ = φ(u) .

Here dΩ2
n is the metric on a unit n dimensional sphere wrapped by the flavour brane.

Similarly the perpendicular space has been written in adapted polar coordinates (ψ,ϕi).

We will be considering perturbations of the following form

ZI(ξ) → δIψ

(

z(0)I(u) + ǫz(1)I(u)
)

= δIψ

(

ψ(u) + ǫe−i(ωx
0−qx1)Ψ(u)

)

,

Aa(ξ) → δa0A0(u) + ǫe−i(ωx
0−qx1)Aa(u) , (A.11)

Notice that with this ansatz, we have φ → φ(0)(u) and φ(1) = φ(2) = 0 in (A.6). The

equations of motion for the background profiles ψ(u), Aa(u) are obtained from L0 and give

ψ → 2∂u

(

e−φ
(0)√

γψ′γuuGψψ
)

− e−φ
(0)√

γ
(

ψ′2γuuGψψ,ψ + nγθθGθθ,ψ

)

= 0 , (A.12)

A0 → ∂u

(

e−φ
(0)√

γγ0u
)

= 0 . (A.13)

From L2 we obtain the equations of motion for the perturbations. The transverse fluctu-

ations A⊥(u) = A2,3(u) satisfy a decoupled equation

EoM [A⊥] → A′′
⊥ + ∂u log

[

e−φ
(0)√

γγ22γuu
]

A′
⊥ − ω2γ00 + q2γ11

γuu
A⊥ = 0 . (A.14)
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On the other hand the longitudinal fluctuations couple to the profile perturbation

EoM [A0] → A′′
0 + ∂u log

[

Υγ00γuu
]

A′
0 − q

γ11

γuu
(qA0 + ωA1) + q2

γ11γ0u

γ00γuu
ψ′GψψΨ

− 1

Υγ00γuu
∂u
[

Υγ0u
(

ΞΨ + ∆Ψ′)] = 0 , (A.15)

EoM [A1] → A′′
1+∂u log

[

Υγ11γuu
]

A′
1−ω

γ00

γuu
(qA0+ωA1) − qω

γu0

γuu
ψ′GψψΨ=0 , (A.16)

EoM [Ψ] → Ψ′′+∂u log
[

ΥγuuGψψ(1−ψ′∆)
]

Ψ′+H(u)Ψ− ∂u
(

Υ∆γ0u
)

−Υγ0uΞ

ΥγuuGψψ(1−ψ′∆)
A′

0

+q
ψ′γ11γ0u

γuu(1 − ψ′∆)
(qA0 + ωA1) −

ψ′γ0u

1 − ψ′∆
A′′

0 = 0 , (A.17)

and there is one constraint from the gauge choice, Au = 0

EoM [Au] → i
(

−ωγ00A′
0 + qγ11A′

1

)

− iω
γu0

γuu
(

ΞΨ + ∆Ψ′) = 0 , (A.18)

where

Ξ =
1

2

(

γuuψ′2Gψψ,ψ − nγθθGθθ,ψ

)

; ∆ = γuuψ′Gψψ ; Υ = e−φ
(0)√

γ , (A.19)

and H(u) is a rather lengthy expression we give here for completeness

H(u) =
∂u

(

e−φ
(0)√

γγuuψ′ (Gψψ,ψ + n
2γ

θθGθθ,ψGψψ − 1
2γ

uuψ′2GψψGψψ,ψ
)

)

e−φ(0)√
γγuuGψψ(1 − ψ′2γuuGψψ)

−

(

ω2γ00(1 − ψ′2Gψψ
γuu

) + q2γ11(1 − ψ′2γuuGψψ)
)

γuu(1 − ψ′2γuuGψψ)

−

(

n(n−2)
2

(

γθθGθθ,ψ
)2

+ nγuuγθθψ′2Gψψ,ψGθθ,ψ + nγθθGθθ,ψψ

)

2γuuGψψ(1 − ψ′2γuuGψψ)

−

(

ψ′2Gψψ,ψψ − 1
2γ

uu (Gψψ,ψ)2 ψ′4
)

2Gψψ(1 − ψ′2γuuGψψ)
. (A.20)

We work with the gauge invariant field combination Z ≡ −i ei(ωx0−qx1)F
(1)
10 = qA0 + ωA1.

From the equations for these gauge perturbations we see that taking combinations

q EoM [A0] + ωEoM [A1] + iqω
∂u log

(

γ11/γ00
)

γ00ω2 + γ11q2
EoM [Au] ,

q(1 − ψ′∆)EoM [Ψ] − ωψ′γ0uEoM [A1] + ΘEoM [Au] , (A.21)

allows us to write the equations of motion in terms of Z and Ψ. We have defined:

Θ = iqωγ11
γuu

[

2∂u

(

γ0u

γ11ψ
′Gψψ

)

− γ0u

γ11 ψ
′2Gψψ,ψ

]

+ nγ
0u

γ11 γ
ΩΩGΩΩ,ψ

2γuuGψψ(ω2γ00 + q2γ11)
. (A.22)
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Further combining these two equations brings them into the form that we use in appendix B.

Z ′′ +M1Z ′ +M0Z +N1Ψ
′ +N0Ψ = 0 , (A.23)

Ψ′′ + P1Ψ
′ + P0Ψ +Q1Z ′ = 0 , (A.24)

where

M1 = ∂u log





e−φ
(0)√

γγ11γuu

ω2 + q2 γ
11

γ00



− qR
γ0u∆

γ00γuu
W , (A.25)

M0 = −ω
2γ00 + q2γ11

γuu
, (A.26)

N1 = U − qR
γ0u∆

γ00γuu
(S − U) , (A.27)

N0 = V − qR
γ0u∆

γ00γuu
(T − V ) , (A.28)

P1 = R (U − S); P0 = R (V − T ); Q1 = RW , (A.29)

and also

R =
1

q

γ00γuuγ0uψ′

γ00γuu(1 − ψ′∆) − (γ0u)2ψ′∆
, (A.30)

S = −q ∂u log
[

e−φ
(0)√

γγuuGψψ

] 1 − ψ′∆
γ0uψ′ − q ω2 γ0uψ′2Gψψ,ψ

2(ω2γ00 + q2γ11)

+ q Gψψψ
′′ω

2
(

(γ0u)2 + 2γ00γuu
)

+ 2q2γ11γuu

γ0u(ω2γ00 + q2γ11)
+ q ψ′ ∂u (γuuGψψ)

γ0u

+ n q ω2 γ0uγθθGθθ,ψ
2(ω2γ00 + q2γ11)

+ q ω2ψ′
γ11∂u

(

γ0u

γ11Gψψ

)

ω2γ00 + q2γ11
, (A.31)

T = −q (1 − ψ′∆)H(u)

ψ′γ0u
+ q ω2 γ

0u

γuu
ψ′Gψψ

+ q ω2
2γ11∂u

(

γ0u

γ11 ψ
′Gψψ

)

− γ0uψ′2Gψψ,ψ + n γ
0u

γuu γ
θθGθθ,ψ

2ψ′γuuGψψ(ω2γ00 + q2γ11)
Ξ , (A.32)

U = −qω2∂u log
(

γ11/γ00
)

ω2γ00 + q2γ11

γ0u

γuu
∆ − q

γ0u

γ00γuu
(Ξ + ∆′) , (A.33)

V = −qω2∂u log
(

γ11/γ00
)

ω2γ00+q2γ11

γ0u

γuu
Ξ+q3

γ11γ0u

γ00γuu
ψ′Gψψ−q

γ0u

γ00γuu
Ξ′+qω2 γ

0u

γuu
ψ′Gψψ , (A.34)

W =
q2γ11

2 (ω2γ00 + q2γ11)

(

nγθθGθθ,ψ
∆

− ψ′Gψψ,ψ + 2∂u log

[

Gψψγ
0uψ′

γ00

])

. (A.35)

In the case of the D3/D7 intersection we are dealing with in the present work we can
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express the factors governing the equations of motion as

γ00 = −f(u)
(πTL)2

u
; γ11 = γ22 = γ33 =

(πTL)2

u
,

γuu =
L2(1 − ψ2 + 4u2f(u)ψ′2)

4(1 − ψ2)u2f(u)
; γ0u = −γu0 = −2πα′A′

0(u) , (A.36)

γθθ = Gθθ = L2(1 − ψ2) ; Gψψ =
L2

1 − ψ2
; n = 3 ; φ(0) = 0 .

with inverse components

γ00 =
γuu

γ00γuu + (γ0u)2
; γ11 = γ22 = γ33 =

1

γ11
; γθθ =

1

γθθ
, (A.37)

γuu =
γ00

γ00γuu + (γ0u)2
; γ0u = −γu0 =

−γ0u

γ00γuu + (γ0u)2
.

B. Boundary conditions for the coupled system

In this paper we deal with a coupled system of second order differential equations with a

regular singular point at p = 0. That is

Z ′′(p) +
A(p)

p
Z ′(p) +

B(p)

p2
Z(p) +

C(p)

p
Ψ′(p) +

D(p)

p2
Ψ(p) = 0 , (B.1)

Ψ′′(p) +
Ã(p)

p
Ψ′(p) +

B̃(p)

p2
Ψ(p) +

C̃(p)

p
Z ′(p) +

D̃(p)

p2
Z(p) = 0 , (B.2)

where the singularity at p = 0 is such that all the functions {A(p), B(p), . . . C̃(p), D̃(p)}
are regular and can be Taylor-expanded in powers of p. This expansion will be indicated

in general as

M(p) =
∞
∑

i=0

mip
i , (B.3)

i.e., using small letters. Performing a Frobenius expansion for Z and Ψ with indices λ and η

Z = pλ
∞
∑

i=0

zip
i ; Ψ = pη

∞
∑

i=0

ψip
i , (B.4)

a system of recursion relations for the coefficients zi and ψi can be calculated

1

p2

∞
∑

k=0

k
∑

i=0

[

pλ ((λ+i)(λ+i−1)δik+(λ+i)ak−i+bk−i) zi+p
η ((η+i)ck−i+dk−i)ψi

]

pk = 0 ,

1

p2

∞
∑

k=0

k
∑

i=0

[

pη
(

(η+i)(η+i−1)δik+(η+i)ãk−i+b̃k−i
)

ψi+p
λ
(

(λ+i)c̃k−i+d̃k−i
)

zi

]

pk = 0 .

We can now focus on the D3/D7 background. Close to the horizon we take p = 1− u.

For equations (A.23) and (A.24) we obtain the following coefficients

a0 = ã0 = 1 ; b0 = b̃0 =
ω2

16π2T 2
; c0 = c̃0 = 0 ; d0 = d̃0 = 0 , (B.5)
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and find two solutions of the indicial equation

λ± = ±i ω

4πT
= η± . (B.6)

There is one free parameter, say z0 (or ψ0). From the recursion relations we find the next

coefficients to be

z1 =
b1 ± i ω

4πT a1

1 ± i ω
2πT

z0 ; ψ1 =
b̃1 ± i ω

4πT ã1

1 ± i ω
2πT

ψ0 , (B.7)

where the ± sign depends on the sign chosen in λ±. Now for an analysis close to the

boundary let p = u in which case, we get

a0 = 0 ,

ã0 = −1
;

b0 = 0

b̃0 =
3

4

;
c0 = d0 = 0

c̃0 = d̃0 = 0 ,
(B.8)

giving the following exponents

λ1,2 = {0, 1} ; η1,2 =

{

1

2
,

3

2

}

. (B.9)

With these coefficients we find near the boundary

Z(u) = AZ(A)(u) + uBZ(B)(u) , (B.10)

Ψ(u) = u1/2 MΨ(M)(u) + u3/2 C Ψ(C)(u) , (B.11)

where

Z(A)(u) = 1 +
∞
∑

i=1

z
(a)
i ui − ω2 − q2

4π2T 2
u log uZ(B)(u) ; Z(B)(u) = 1 +

∞
∑

i=1

z
(b)
i ui , (B.12)

Ψ(M)(u) = 1 +

∞
∑

i=1

ψ
(m)
i ui − ω2 − q2

4π2T 2
u log uΨ(C)(u) ; Ψ(C)(u) = 1 +

∞
∑

i=1

ψ
(c)
i ui . (B.13)

C. Asymptotic expressions for lightlike momenta

In order to trust the numerical results it is important to compare both to previous results,

or to analytical expressions wherever possible. In the current setup it is possible to calculate

such analytic results only in certain asymptotic limits. Setting the momenta on the light

cone, w = q, the longitudinal polarization vanishes and the equation for the transverse

component of the gauge field (A.14) acquires the following form upon introducing the

particular values given in (A.36) and (A.37)

A′′
⊥ + ∂u log



f ψ̃

√

ψ̃6 +D2u3

ψ̃2 + 4u2fψ′2



 A′
⊥ +

w2

u f2

ψ̃6(1 − f) +D2u3

ψ̃2(ψ̃6 +D2u3)
A⊥ = 0 . (C.1)

In contrast to the massless, D = 0 case [12], we have found no analytic solution when

baryon number is turned on. We can however perform analytic expansions in the small

and large w regimes and extract analytic information perturbatively.
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C.1 Low frequency limit

For the small w limit we will use a perturbative approach to find the analytic behaviour.

We begin extracting the regular singularity at u = 1 by substituting

A⊥(u) = f−iw/2 (Y0(u) + wY1(u) + O(w2)
)

, (C.2)

with Yn(u) regular at u = 1. We can then expand the equation of motion as a series in w
and solve it order by order. From (C.1) we are led to the following equation for Y0(u),

Y ′
0 =

C1

f ψ̃

√

ψ̃2 + 4u2fψ′2

ψ̃6 +D2u3
. (C.3)

Clearly to avoid a singular solution at u = 1 we must set C1 = 0 and hence Y0 is a constant.

For Y1 we perform the same procedure, finding the general solution

Y ′
1 =

C2

f ψ̃

√

ψ̃2 + 4u2fψ′2

ψ̃6 +D2u3
+
i

2
∂u (log(f)Y0) , (C.4)

which is regularized at the horizon setting

C2 = i Y0

√

(1 − ψ2
0)

3 +D2 , (C.5)

where ψ0 = ψ(u = 1).

We can calculate the spectral function by looking at the u→ 0 end of the solution and

find that

χµµ ∼ NcNfT
2

2
w√(1 − ψ2

0)
3 +D2 + O(w2) , (C.6)

which leads to precisely the same result for the conductivity as that obtained in the van-

ishing electric field limit in [22]. This is a very elegant result showing that the microscopic

and macroscopic calculations agree with each other.

C.2 High frequency limit

Now we move to the w ≫ 1 limit. We use the Langer-Olver method (a version of the WKB

approximation) to construct the asymptotic solution and will consider only the massless

case. Following [12, 19], we perform the following transformation

A⊥(u) =

√

1

f

√

1

1 +D2u3
y(u) ; u = −x , (C.7)

for the equation (C.1), in order to rewrite it in a Schrödinger form

y′′(x) = [w2H(x) +G(x)]y(x) , (C.8)

where

H(x) =
w2

x f(x)2
1 − f(x) −D2x3

1 −D2x3
, (C.9)

– 27 –



J
H
E
P
0
9
(
2
0
0
8
)
0
0
9

x = −u ∈ [−1, 0], and G(x) is another function which will not be needed in the following.

For large w the dominant term on the right-hand side of (C.8) has a simple zero at x = 0

and thus, according to [49], the asymptotic solution can be expressed in terms of Airy

functions. With this goal in mind, we change variables from x to ζ as

ζ

(

dζ

dx

)2

= H(x) ⇒ ζ =

[

−3

2

∫ x

0

√

H(t)dt

]2/3

, (C.10)

and rescale y(x) to W (ζ) as

y =

(

dζ

dx

)−1/2

W . (C.11)

After which we are left with a new differential equation for W (ζ)

d2W

dζ2
= [w2ζ + η(ζ)]W , (C.12)

where η(ζ) is another function whose form is not needed in the analysis.4 For large w (C.12)

reduces to Airy’s equation and the solution to leading order is

W (ζ) = A0Ai(w2/3ζ) +B0Bi(w2/3ζ) + · · · . (C.13)

Dictated by the incoming-wave boundary conditions at the horizon we set B0 to zero. Thus

the approximate solution for A⊥(u) for large w is

A⊥(u) = A0

[

ζ(−u)
u(1 +D2u)

]1/4

Ai(ω2/3ζ(−u)) + · · · , (C.14)

leading to the following expression for the transverse correlator

Π⊥ = −NcNfT
2

8

(

−D
2

5
+

(−1)2/331/3Γ(2/3)

Γ(1/3)
w2/3

)

. (C.15)

Note that the transverse correlator depends on D, but only through the real part. The

trace of the spectral function in the high-frequency limit for lightlike momenta is5

χµµ ∼ NcNfT
2

2

35/6Γ(2/3)

2Γ(1/3)
w2/3 + O(w) , (C.16)

and is independent of the presence of baryon density, at least to leading order in w, giving

the same result as in [12]. The appearance of the baryon density in the real part of the

transverse scalar indicates possible deviation of our result from that of [12] at the first

subleading order in w. The numerical solution matches this claim.

4The exact expression for this function in terms of G(x) and H(x) is in [19]
5In the massless case the differential equation for the scalar mode is decoupled from the longitudinal

one, and its contribution to the spectral function can be calculated independently. In the lightlike case,

even if the initial differential equation for the scalar is different from that for A⊥, we can prove that

the contributions to leading order in ω in the transverse scalar and consequently to the spectral function

are (C.15) and (C.16).
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D. The Wess-Zumino term

In order to illustrate that there is no contribution from the WZ term to the equations of

motion, we start by writing the Ramond-Ramond four-form C4 in the following notation:

C4 = −(πTL)4

u2
dt ∧ dx1 ∧ dx2 ∧ dx3 . (D.1)

The contribution of this four-form to the five-form field strength is:

dC4 =
(πTL)4

u3
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ du , (D.2)

whereas the Hodge-dual contribution is:

⋆dC4 = 4L5(1 − ψ2)ψ sin θ cos θdψ ∧ dφ ∧ dθ ∧ dφ2 ∧ dφ3 . (D.3)

From this expression we can deduce the four-form dual to the one in (D.1):

C̃4 =
2L5

3

[

(1 − ψ2)ψ
(

sin2 θdψ ∧ dφ− sin 2θ φ dψ ∧ dθ
)

+
ψ2

2

(

1 − ψ2

2

)

sin 2θdφ ∧ dθ
]

dφ2 ∧ dφ3 . (D.4)

Next, we use (D.4) to calculate its pullback onto the D7-brane, so we have:

P
[

C̃4

]

=
2L5

3

(

1 − ψ2
)

ψ sin2 θ
∂ψ

∂xα
∂φ

∂xβ
dxα ∧ dxβ ∧ dφ2 ∧ dφ3

+
2L5

3

(

1 − ψ2
)

ψφ sin 2θ
∂ψ

∂xα
dxα ∧ dθ ∧ dφ2 ∧ dφ3

+
L5

3
ψ2

(

1 − ψ2

2

)

sin 2θ
∂φ

∂xα
dxα ∧ dθ ∧ dφ2 ∧ dφ3 . (D.5)

We are interested in WZ terms with a product of two fields which are fluctuations on the

D7-brane. Each term in the above four-form will contain at least one factor of a fluctuating

field. The pull-back must be contracted with two factors of the brane world-volume gauge

field, and therefore one of these two factors must be the background component F0u cor-

responding to the presence of the finite baryon number density. The other component will

therefore be a fluctuation of a gauge field. The eight-form product which will contribute

at second order will have the following three terms:

F ∧ F ∧ P
[

C̃4

]

= F0u ∧ F12 ∧
(

L5ψ2

(

1 − ψ2

2

)

sin 2θ
∂φ

∂x3

)

dx3 ∧ dθ ∧ dφ2 ∧ dφ3

+F0u ∧ F23

(

L5ψ2

(

1 − ψ2

2

)

sin 2θ
∂φ

∂x1

)

dx1 ∧ dθ ∧ dφ2 ∧ dφ3

+F0u∧F31

(

L5ψ2

(

1−ψ2

2

)

sin 2θ
∂φ

∂x2

)

dx2∧dθ∧dφ2∧dφ3 . (D.6)
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This can be written as:

−A′
0L

5ψ2

(

1 − ψ2

2

)

sin 2θ

[

(∂1A2 − ∂2A1)
∂φ

∂x3
+ cyclic in 1,2,3

]

VolD7 . (D.7)

Then it is easy to produce the WZ contribution to the equation of motion for φ:

−A′
0L

5ψ

(

1−ψ2

2

)

sin 2θ [∂3 (∂1A2−∂2A1)+∂1 (∂2A3−∂3A2)+∂2 (∂3A1−∂1A3)] . (D.8)

From this equation it is obvious that the terms coming from the WZ part of the action

vanish due to the antisymmetry of the gauge field indices.

For the field A1 the WZ contribution to the equation of motion is given by:

∂

∂x2

[

A′
0L

5ψ

(

1 − ψ2

2

)

sin 2θ
∂φ

∂x3

]

− ∂

∂x3

[

A′
0L

5ψ

(

1 − ψ2

2

)

sin 2θ
∂φ

∂x2

]

, (D.9)

which once again gives no contribution from the WZ term. For the fields A2 and A3 the

above argument goes through identically.

E. Comparison with the conductivity found by Karch and O’Bannon

In [22] the following result for the conductivity was obtained:

σ̃ =

√

√

√

√

N2
fN

2
c T

2

16π2
cos6 θ +

D̃2

(

π
2

)2
λT 4

. (E.1)

The difference in normalisation between our conductivity, σ, and theirs, σ̃, is:

σ̃ =
4

e2
σ
NfNcT

4π
. (E.2)

The factor
NfNcT

4π comes from the normalisation of χ and the factor 4
e2

is a difference in

definition between our conductivities. Therefore:

4

e2
σ =

√

√

√

√(1 − ψ2
0)

3 +
16π2

NfNc

D̃2

(

π
2

)2
λT 4

. (E.3)

Inserting their definition of λ and remembering to put back in the AdS radius gives:

σ =
e2

4

√

(1 − ψ2
0)

3 +
D̃264α′2

T 6N2
fN

2
c L

4
. (E.4)

The difference between our definitions of D is calculated by looking at the UV behaviour

of A0. We must also note that the difference in our definitions of the radial coordinate are

given by:
z

zH
=

√
u

√√
1 − u2 + 1

, (E.5)
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where zH =
√

2
πT .

This gives a difference in Ds as:

D̃ =
NfNcT

3L2

8α′ D , (E.6)

where again the tilded quantity is their definition. Using this in the definition of the

conductivity gives us:

σ =
e2

4

√

(1 − ψ2
0)

3 +D2 . (E.7)

This result matches perfectly with our numerical calculation given in section 5.
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